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Korteweg and De Vries [ 1] were the first to make an approximate invest-
igation, in 1895, of long surface water waves degenerating into a
solitary wave when the wavelength tends to infinity. The equation of the
profile of these waves is expressed by a Jacobi elliptical function in
cnx. These authors dubbed these waves "cnoidal" because of the c¢n sound.

Many studies, both theoretical and experimental, have been carried out
on cnoidal waves in recent years.

Lavrent’ evym [ 2 ] in 1946 gave a formal proof of the existence of the
solitary wave based on variational principles in conformal representation.
In 1954 Priedrichs and Hyers [ 3 ] put forward a simpler proof which was
based on the general theorems of functional analysis. Littman [4 ] de-
monstrated the existence of a certain class of cnoidal wave. This class
does not include those degenerating. into a solitary wave when the wave-
length tends to infinity. Here we give a proof of existence which is
valid over the whole range of cnoidal waves.

1. Definition of problem. We deal with a steady periodic wave, of
length 2L, moving at constant velocity ¢ in a channel with a smooth
horizontal bottom surface and filled with an ideal incompressible liquid.
It is assumed that the wave is symmetrical about a vertical axis passing
through the peak. It is a well-known fact that the velocity of a wave
moving over a smooth horizontal bottom surface is an indeterminate
quantity. One can define the wave velocity ¢, for instance, as the mean

v velocity of particles over the bottom

(5]

5

L,
¢ = Lilgv(s)ds. (1.1)

930
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Let us take a system of Cartesian coordinates which are tied to the
wave as shown in the accompanying figure. The motion, with respect to
these coordinates, will be a steady state. Put z; = x; + iy,. It is
assumed that there is no turbulence. The velocity potential ¢, (x;, ¥,)
and stream function ¢,(x,, y,) will be conjugate hamonic functions,
w,(z)) = ¢,(x;, ¥;) + iy (x;, y;) will be a function which is analytic in
the curved quadrilateral A;B,C,D, (Fig.). At the free boundary the follow
ing condition of constant pressure should hold:

1

2

%’5—\2 + ZgY]_ (xl) == ¢onst (1.2)
1

Here g is the acceleration of gravity, y; = Y;{x,) is the equation of
the free boundary. Because the motion is a steady state the free boundary
and the bottom should be streamlines

PYp=0 fory1 =0, Y= Q for yr = Y1 () (1.3)

where Q is the discharge of fluid through a channel cross section. In

view of symmetry about lines 4,C; and B,D, the velocities are horizontal,
i.e. d¢/ds =0 along A,C, and B\D,. Therefore

¢ L, ) = — ¢ (— Ly, 1) = d (1.4)

where d is some constant which can easily be expressed in temms of L;
and ¢. In actual fact it follows from (1.1) that cL, = d.

We introduce non-dimensional variables

0
i=ng, w=, T@=Vi@g, L=, =L (15)

It is obvious from this that the condition cL; = d will be satisfied.
We arrive at the following mathematical problem, namely, to find a func-
tion Y(x) and a function w(z) continuous over the interval (- #/A, 7#/A)
which are analytic in region ABCD and which satisfy the boundary condi-
tions

.;: i’s-z-{-vY(x):const, for y =Y (2) ("=~%32> (1.6)
p=0 for y = 0, P =1 for y = Y (x) (1.7
p=L trz=%, p=—F frzi=—F (1§

Condition (1.8) is equivalent to the requirement for periodicity in a
solution. Now let us change the variable
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. dw)

x(w):ﬂ—{—ir:iln(v 3 - (1.9)

In the complex potential plane, rectangle 0 < ¢y <1, — 7/A < ¢ < n/A
corresponds to the flow region; and we denote it as (S). The problem (see,
for instance [ 3]) reduces to a search for a function y{(wv), analytic in
the open rectangle (S), continuous in the closed rectangle and satisfying
the boundary conditions

%—Bze‘?ﬁsinﬂ—ﬁ forp=1, 0=0 for =0,

6=0 for cp:i—;\‘l

Having solved the problem which was posed we can express the relation-
ship between z and v in quadratures. Actually, from (1.9), it follows
that

1

dz =v 3exwdy (1.11)

We integrate, bearing in mind that x = #/A, y = 0 for ¢ = w/A,¢¥ = 0,
and obtain

1w
z=—:——[~v—? S eix (0dt
T/

(1.12)

Because z = — #/A when w = — n/\, the following supplementary condi-
tion should be fulfilled:

1 1 Al=n
v 3 S e"Wcos b (t)dt (1.13)
0

X
A

v

2. Green’s function for the linear problem. Let us consider
the following boundary-value problem for hammonic functions: find func-
tion 6(x, y), hamonic in the open rectangle (S), continuous in the
closed rectangle and satisfying the boundary conditions

8, —0=f(p) for p=1 (2.4)
8=0 foryp=0, 68—=0 for g—=c = (2.2)

where f(¢) is an odd periodic function with period 2a/A. A solution of
this problem is given in Littman’s article [4].

/A

0 = S G(‘P: P, (P’)/(CP’) d(P': G = %Z-inhnmp sin nA@ sinnAg’ (2.3)

, njcoshn), —sinhzn),
0
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where G(¢, ¢, ¢’) is a Green’s function.

If in Formula (2.3) we replace f(¢) by e ¥ sin § — 6, we find the con-
jugate function 7 (¢) and put ¢y = 1, the problem posed at the end of
Section 1 reduces to nonlinear integral equations. Littman has shown that
these equations have solutions which decay in a plane-parallel flow when
A= 0, Littman’s result does not include the more interesting group of
solutions which decay in a solitary wave. This is because an analysis of
the properties of Green’s functions (2.3) is very much more difficult
when A » 0 because in such cases the Fourier series degenerates into a
Fourier integral. Below we give a transformation of Green's function into
a more convenient form for = 1.

Let A, be the roots of the equation

tcost —sint =20 (2.4)

Theorem 2.1. Function G(¢, 1, ¢’) can be expressed as

23inh((p’ — JU/A) A sinbd, O

Ms

——— _A ’ - 14

G= -, y (2.5)
r__ A: ’ ’inhx (P"i“h(q’ — / Ak ,
|3[<P —’T??]_El Ao T T ) for (¢ > ¢')

Proof. Note first of all that the following expansion in elementary
fractions is valid:

sinh Z

=2
3 {
ot sz — @ T 2 EIW (2.6)

Replace z by nA to obtain

o

sihnd 3 1, 2 1
n)coshn), —sinhn},  AZ n? + Fxl 2 78 (A [ A (27)
k=1
If we insert the expansion into (2.3) and change the order of summa-
tion (the validity of this can be proved), we obtain

G = 3 & €08 nh, (@ — §')— cos nA (¢ + @)

A n? +
n=1
2 O < (Ag/4)[cos nd (@ — @) + cos nd (¢ + ¢')]
- ?El n2=Jl M [22 + (e / 1) (2.8)

We now make use of the following trigonometrical expansions:
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cos nx b1 4 n?
b el @9
A (—a<e <)
1 (—1)"a T coshax
22T 2 w80 = T (2.10)
n=1

Replace x by x + # and x - 7 in (2.10), to obtain

Tt cosh a(xr—7m 1 o a

Tw uinl(naJ'IZ ):—a+ 3 7 g2 008 O<=z< 2n) (2.11)
n=1

Tehe@tm) 1, Q@ cocns mcs<y  (242)

2 sinh a7t — a+2_| n?® - a? (—2r<<z<<0) .

n=1

Inserting into Equations (2.9), (2.11) and (2.12) x = A (¢ £ ¢°),
a= )\k/)\, we then have

3 cosnh(¢—¢) —cosnh (p+ Q) _ 3[min(q,, ') —}x?‘P‘P'] (2.13)

nA nd
n=1
2 o (/MW [cosnd (@ — @) —cosrA (@ +¢)]
n ¥+ (A [ A)? -
n=1
‘mh(q)'—tp—n/x)kk—mh(w’+q>—n/h)7»k L (214)
sinh (A,7C/ A) @ <)
T Yoosh (@ — @ — 7T/ A) Ay —cosh(p’ + @ — 7/ A) Ay ,
l sinh(A;70 / A) (@> )

If we substitute Equations (2.13) and (2.14) in (2.8) we arrive at
(2.5). Theorem 2.1 is thus proved.

Theorem 2.2. The solution of the linear problem (2.1) can be repre-
sented as follows for = 1:

6 = —38% + 3[1 — (A /m) @l Lf + Af (2.15)

where L is a functional, S and A are linear operators

/A P
L=\ ¢7@)de, Sr={/@)de
0 n/A

(o] 4
1 Lo f 44 . ' ’ ’
Af=—2 k§=',1 EPET WY [""“ (@ — 7;) My §=m"7kaP f(@")de' + (2.16)
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/A
| sinh Ay S sinh A (tp' — %) 7(9") dq)’]
@

Proof. In accordance with Formula (2,3), fory =1

/A @ n/k

8= &G(CP, 1, cp’)f(t?')dcp'=SG(q>, 1, 9) f(9')de" + S G(o, 1, ) dg’ (2.17)

0

If we make use of Equation (2,5) for G(¢, 1, ¢’) we obtain

3 w/A 37
0=3{o7@)de — Lo { 07 @)de -+ 30 | 7(@)de'+ A7 218)
0 Oq} 0 ®
0=3[1— 2 o|L/—3¢ { 7@y +3 | o7 @)de +47 (219
/A /A
If we now notice that
b4 g
s = | 7@)de — | 97 (@) de’ (2.20)
/A /A

Theorem 2.2 is proved.

Theorem 2.3. Function 7, conjugate with 6 when ¢y = 1, can be repre-
sented as

T = 383j+—:—%-<1 — -:;—q)YLj——%Sf +Bf+r(-}.) (2.21)

where B is a linear operator

. ?
1 1 N ’ I I
Bf=2 2 Asanh(TlAy | M) ["”}‘ <(P - “A’*)?\'k S'"‘h M'f (@) do’ +
k=1 0
/A ﬂ,i)\
et (oo (o — ) hef () g’ — \somog'f (@) o] (2.22)
@ 0

whilst r (7/A) is an arbitrary constant.

Proof: Functions r{¢)/6(¢) are connected by Cauchy-Riemann condi-
tions; boundary condition (2,1), therefore, can be written as

= —b—1()

If, instead of 6 we substitute its expression (2.15) and integrate
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between #/A and ¢, we arrive at (2 21).

3. Integral expressions of the problem. First approximation.
In order to reduce the boundary-value problem, posed in Section 1, to
nonlinear integral equations, the following substitution must be made in
Formulas (2.15) and (2.21):

f(@) = e sind — 0 (3.1

It is well known that an important step in the study of long waves is
that of "elongating" or "extending" the independent variable. In a com-
pletely formal manner we select some parameter ¢ and subject this to the
extension, The physical significance of parameter ¢ will be explained
later. Let us assume

Q° = &g, %:%K, 6 = &%°, 1= ¢e¥1°,
P = - [e7%"" sin ¢%° — &%°] (3.2)

It is evident that

Q

P/e @
sf=\ 7@ de' = 2\ /(o) dg” = es57p°
1§/s }S{ (33)

S = €387°, S = g5

Substitute (3.3) in (2.15) and (2,21), and we obtain a system of two
integral equations

0 = — 352 +3(1— ‘*-;5) Lfe + 27eTf

o 3 (3.4)
© =7 (K) +38°%° 43K (% — 1) Lf° — 2ne*V° — 5 63°F°
where
K
L =\ o1 (¢%) do”
;
s b 1 2 }"k o K o o . }"k o7 o
TP == 3 kT e @B | e e de + (35)
k= 0

e b A
a2 e | o (7)o — K) dg”|

®°
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o0 %
V= k21 }%2—,@(1)\*]—(—/—;) [“'“%‘ (¥°—K) S ! (<P°’)-inh%¢°’dcp°’ + (3.6)
= 0
M o€ A £
oo 2 | 1o (9”2 (¢ — K) dg— smn X ¢°'7° () dgp” |
%° 0 -
For simplicity, the sign "0* will be omitted. in what follows.
In first approximation we put ¢ = 0, then Equations (3.4) yield
K
0 = —38%+3(1 — )| @a(e) do (3.7)

K
To=%(K) +35%,+ 2K (1— L { o7 (@)dp,  fo=—3v8 (38)
(1]

It is easy to see that 6 = - ro'. If we differentiate the first
equation (3.7) twice, we obtain

70" = 97070’ (3.9)

The solution of this ordinary differential equation is expressed in
elliptical Jacobians (see [4])

To = %az [21::2 — 1 — 3k%n? (aVTg(p)] (3.10)

In these expressions a and k are arbitrary constants, k is the
modulus of the elliptical function, a can be chosen arbitrarily (t only
affects the relation between ¢ and the physical parameters which deter-
mine the flow).

For simplicity we assume that a = 2/4/3 and we then have
To = % (1 — 2" — —;—k20n2 , k2 =1—kK° 3.11)

Note also that the period K will be a complete elliptic integral of
the first order in k. Below we will demonstrate that the system of Equa-
tion (3.4) admits a solution which depends on the two parameters ¢ and

k7.

4. Variational equations. Let us set

8 = 6 + 06, T = T } 01 (4.1)
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Notice that Expression (3.1) for f can be represented as

f= —310 -+ e*fs (4.2)
when f, 1s a complete function of 0, 7 and ¢. We find &f:

8f = —3 (10d0 + 8007) + e20fs = 3 (T'dT — Tod0) L e2fs (4.3

We vary Equation (3.4) and we find

80 — — 35207 - 3 (1 — F) L8] + 2meTof (4.4)

8t = 8t (K) + 35%f + L K (1 — %)"‘ L8f — 2metVaf — 2 e286f (4.5)

If we separate the linear parts of the equations (4.4) and (4.5) and
then invert the linear operator in this manner, the problem will reduce
to a system of nonlinear integral equations for 86 and 87, which can
be solved by the method of successive approximations for small values
of ¢.

Introduce varisble y as
y = 0T + 2metVoj + 3 €25 8] (4.6)
It then follows from (4.4) that
—y' = 80 — 2meT8f (4.7)
If we insert this expression into (4.4) and differentiate, we obtain
y = 388f — S L8f (4.8)
In this expression
8f =3(woy)" + 80, do=e28f1 — bne [eto’ VOf — wT8f] — 1 e?r’ S8f  (4.9)
Equation (4.8) can be rewritten as
y" = 98 (tay)’ + 2L (tay)’ +3(8 b0 —{—%Léa) (4.10)
However
S (Toy)” = Ty — (ToY)e=K (4.11)

We insert these expressions into Equation (4.10) and obtain
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c

K
Yy — Ity = T u@)u(e)=3 (S éo + I%LSO), c=—9 S Tyde (4.12)
0

It is easy to prove that the number ¢ can be chosen arbitrarily, i.e.
the third of the Equations (4.12) does not impose any limitations on c.
In fact, if we integrate Equation (4. 12) from 0 to K we arrive at

¥ (0)—y'(K) — 9I§ Ty dp=c+J (J’ = §“(?>d?) (4.13)
[}

]

However, because of (4.7) y’{0) = y* (K) = 0, and because of the
second of the equations (4.12), j = 0, it follows that the third of the
expressions (4.12) is fulfilled for any value of ¢. If we set

¢ = —3Ldo (4.14)

it can only reflect on the way in which ¢ depends on the physical flow
parameters. Equation (4. 13) will then take the following form

Yy’ — 910y == 3Sdo (4.15)

and thus the problem of inverting the linear operator reduces to solving
an ordinary differential equation.

5. Solution of the differential equation. We are dealing with
the equation

y' — 9ty = [ (¢) (0.1)

where f(¢) is an even periodic function with period 2K. The problem is
to find a solution which must also be an even periodic function. We find,
first of all,linearly independent solutions of the homogeneous equation.
One of the solutions is z,(¢) = 7 (“(¢) whilst the second is found from
Liouville’'s formula

d
22 () = 21 (9) g -—zlszp) (5.2)
From Formula (3.11) we obtain
7; (¢) = cngsngpdng .3)
And, it follows that

23 (@) = cng sne dng S . S (5.4)

cn?p sn%e dn2gp

It is easy to verify the following identities:
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1 1 1+ Kkcenlp 1 ko1

cn®p sn?p dn?e  sn’p + cn?p dn’e sn2 + F cnlp k2 dn’p (5-5)

I

Introduce the definitions

@ P [
dt dt © dt
D, = Ssn% ! D, :Scnzt ! Dy = &dn% (5-6)
a 0 0
Then
k4
22 (¢p) = cngdngsng {(Dl w55 ‘1)3} (5.7)

The integrals in Formulas (5.6) are evaluated in an elementary fashion

[
D1 () =g _M_Sdnwz (5.8)
1]

sng
1 fsnpdng [
D: (p) =¢ +W[M —gdn2 tdt]
0

®s (¢) _-ﬁ[g dn2tdt — k2sl‘(%‘3]

0

Theorem 5.1. Function z,(¢) can be put in this fom:

2 (9) =Bozn (@) +T (9 (5.9)

where B is a number, and {(¢) is an even function of period K.

Proof: We note first of all that

@

E(k
Sdn%dt K((k;(p + % (@) (5.10)
0

where x(¢) is a periodic function and E(k) and K(k) are complete elliptic
integrals of the second and the first kind. Then it follows from (5.9)
that

(5.11)
®,= [1 - _,ETJ et w(e) D= [1—7{57J ¢ +x2 () D3= %%‘P‘*‘Xa(?)

Here x;, X3, X3 are periodic functions. Substituting these expressions
in (5.4) we obtain Formula (5.9), and thus

B = — 2 (1 + K+ kY E—K (K + k?)] (5.12)
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and the theorem is proved. We will now demonstrate how to find periodic
solutions to Equation (5.1). The general solution depends on two arbi-
trary constants. The condition of evenness determines one arbitrary con-
stant. Thus the even solution takes the following form:

v=a@\f0a0a—a@\tOrOd+ae 613
K 0

We will determine the arbitary constant ¢ from the periodicity condi-
tion. Because of periodicity y(¢ + 2K) — y(¢) = 0. On the other hand

¢12K
Y@ +2K) —y@) =lm@+2K) —a@l | fadt
¢42K © o+2K * ®
+a@] | ma—\md)-a@| | fmd—{ind]+
K ¢ 0 0
+ ¢ [z (@ + 2K) — 2 (¢)] (5.14)

Because of (5.9) the equation holds
22 (¢ + 2K) — 22 (¢) = 2BKz1 (¢)

Owing to the fact that f($) is an even periodic function, whilst
zl(qS) is odd, we have

o+2K @ K

S f @) 2 (1) dt —Sf(t) 2 (f) dt = iledt——ifmdtz S fadt =0
w-II-{ZK ® " ¢+§K @ - <oK -

§ fzzdt—§]‘zzdt= }g fzuit—IS{sz:ltzijzzK(t—i—2K) dt — (5.15)
—§( fradt = _SK fz2dt + 2BK _&K fzdt+ é fradt — jx fzadt -+ 2BK§{ fzdt

If we substitute these expressions in (5.14) we obtain
® K b

.?.BK21S fzdt — zl[zx fz2dt + 2BK S fz dt] + 2BKz (g)c = 0 (5.16)
K 0 —K

This identity will be satisfied 1f we put

K
c= ﬁg faadt (5.17)

0
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Thus we prove the following theorem:

Theorem 5.2. 1f f($) is an even periodic function with period 2K,

then the equation y” - 97 )y = f(¢) has a solution which will also be an
even periodic function

y=Nf (5.18)

where N is a linear operator, detemmined by an equation of the type

@ K

Nf=z @\ fad— 2@ \ frade + 2D frar (5.19)

K 0

6. Functional spaces B; and B,. Let B, be a Banach space of con-
tinuwous odd periodic functions of period 2K, the nom of an element of
which is determined by

8() i
O)p, = su [] J 6.1
19l ozogxl dng 1)
Let B, be a space of even continuous periodic functions with nom

[T (@]
T = S —_— .
Il 02;21{[ Y | (6.2)

Denote by B a Banach space whose elements consist of pairs w(6, 7)
where 6 B, and r & B,, whilst the nom is equal to

1
Jol={[* 4]0} 2 (6.3)
Note that when k’-= 0 the spaces we have introduced degenerate into

spaces which have been used by Friedrichs and Hyers in their proof of
the existence of the solitary wave. In what follows we will always assume
that

0<h IS L (6.4)

We will now deduce several inequalities for elliptic functions which
we will have occasion to use frequently.

Note that when 0 < ¢ < K

@

0<cng<dng <1, gdn"’tdt\{ 2
Q

P P

K
dn2t dt <S dntdt = (6.5)
(]

Let ¢ = am ¢, we then have
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¥
du PcosyP T
cng = cos —_ - e R
Pong \p§ Vi—lkEsinte /T —kesin? SPS3
Saw {4 ¢ oa in
du v v _ siny _ sng
Sdnu—g 1 — k?sin?v <& cos?y ~ cosp  cng (6.6)

0 0

Furthermore, it is easy to see that kZcn’p = dn?p — k”2, integrating
this identity from 0 to K, we obtain

K K
E — KK = 2 & cnlp dcp>%g cn’p sng dng dp = (6.7)
0 0

Theorem 6.1. Whatever the value of k’ from the interval [0.1/ /2],
operator N acts both from and to B, and is limited, i.e. it should be
possible to find a constant ¢, independent of k”, such that

INfIS el fl

Proof: Because | f| < || f|| dn ¢, then, from (5.19) we have

K ] K
INAI<I (122 @)1 mdnedt + 21 (9) (| 22| dntae + L25L (2, |dne ) (6.8)

¢ 0

Let us first of all evaluate |z,(#)|.On the basis of (5.5) z,(¢) can
be represented as
(? dt C1 + k%en% .\
2z (@) = cng sng dng () =T —{—S PSR dt) (6.9)
0

a

Because the function dn ¢ is a decaying one, we have
2 N
|22 (¢)] < cng sng dng {| D1 (@) | + oz ] D2 (@) } (6.10)

where ®, and ®, are detemined from the formulas (5.8). In consequence
of (6.5% and (6.6)

cngsngdng | @1 (@) | <Em 14+ ga=1-+=n (6.11)
Now evaluate ®,. First of all observe that

[ ¢
&dn2 tdt = gdnt (dnt — kcnt) dt — ksng ==

0 1]
®

@
¢ dnt (dn2¢ — k2en?t) . . '28 dnt . )
—& ant hene Gt keng =K\ o dt —ksng - (6.12)
0

0
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Further
sng dne __ sn @(dng —keng) k’2sng
g ksng = g ™ “cenp (dng + keng) (6.13)
Therefore, because of (5.8)
(6.14)
1 dng ¢ ¢ dntar
sng dng _ sng n
D, (¢) = ¢ + Tz“[ g S dn? dt] =9+ n@ (dng + ksng) + S dnt + kcnt
0 0
Therefore
1 -
| D2 (@) | < 29 + hodng (6.15)
If we male use of estimate (6.6), we obtain
cngsngdng | Dz (@) | <1 + = (6.16)

Inserting inequalities (6.16) and (6.11) into (6.10) we find that

. 31+
@) < 52 (6.17)

Insert now estimate (6.17) into (6.8)

K
1 i
INFICAN3(T - n)( e &cnt snt dn2t dt -I-
¢
S a3 4me a
X n
- ong sngdn ¢ \W + BRann S dnz‘> (6.18)
0 0
e (6.19)
¢ 1 dndp — k' Ca T 4
dndp — &' . N w By
{ ontont dnear = o1 B < Lawg, (o= (—ama= o
s 0 0

Let us estimate, furthemmore, the value of BK. In accordance with

(5.12)

t
K

But, when 0< 2k’%2 <1

|BK | =

(k- EYE — KK+ k') (6.20)

k4B = (K24 K — 20272 > — kP = AR

Therefore, on the basis of (6.7)
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1 . , 1 1
| BK| > (1 + E®) (B — K"K) > g > grgme (6.21)

If we insert the estimates (6.19), (6.20) and (6.21) into (6.18), and
take account of (6,6), we arrive at

INFI<[/ldng 3 (1 +m) L5 - 1 -+ 9 (4 +n)} (6.22)

Owing to the fact that the number inside the brackets is independent
of k’, we have the confimation of Theorem 6.1.

Theoren 6. 2. Operator Mf = d(Nf)/dp is bounded and acts from B, to B,.
The proof is similar to that of Theorem 6. 1.

Theorem 6.3. Operator Sf operates from B, to B, and from B; to B, and
is bounded.

Proof: by definition

sf =\ 1 @ do (6.23)
K

Therefore
K

| 1< 71 duede =} 11(5 — ame)

But if 0 < y < #/2, we have

siny >y (1—L) >y(1—4 ) > 5 v (6.24)

If we take y = /2~ am ¢, we obtain
n/ 2 — amp < 2cos amg = 2eng < 2dng

and hence it follows that ||Sf || <2|| fIl.

Theorem 6.4. Operator T acts from space B, to B, and is bounded, 1i.e.
NTFI <eCGylifll, moreover C, is independent of &’ ande.

Proof. Remembering the definition (3.5) of the operator T we have

S 1
)Tf|<llfll{§ T (KR, 78~
A ® X " A g A
. [.m__? (K — cp)gdn teish " £ dt +-inhlglcpg dn geish-" (K — t)dt]} (6.25)

0 @
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We give an estimate for the functions

2 A 3 N
A(p) = gdntm»% tdt, B(p)= S dntem™ (K —t)dt  (6.26)
0 [
It is obvious that

A A
4(p) < \dnt cosh—;n- tdt = )% dnyp unhsﬂ ?+

(=4 Wy T2

¢ A A
+ 5; X 2k?eng sngsinn™ tdf < ;; [dn(psinh?m o+ AJ (6.27)
0

] .
aIld fmﬂl this e dn?silh()\m / 5;) “ 28

It is even simpler to estimate B(¢). Because dn ¢ is a monotonic func-

tion we have
K

K
. A A
B(9) < dncpsunh (K —1)dt < dncpgco.hTm (K —tydt =
¢

G

= dn(p nlnh-— (K—-9)< )\ T— dncpunh—(I\ — @) (6.29)

If we bear in mind that

A A A A
slnh—:l (Pslnh?m (K — (P) <ulnh~—— P cosh— (K — (P) <

+sinh—(K—— <p)] sinh AmK (6.30)

A
<_2_ sinh
we obtain

T/ <dngls] D 25 T T (6.31)

Let us evaluate the sum of the series. The quantities A, satisfy the
inequality
m < Ap < mn +mn/2

Let ¢ < #/2, then 1 - ¢/A, > 1~ 1/2 = 1/2, and thus

/18

oo
2 1 4 1 2
Z——zi_m <42 <w dwm=7

™
m m=1 m m=1

i

m=]
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Now from (6.31) it follows that

ITH< 5 el f]

In a similar way we can show that operator Vf acts from B, to B, and
is limited.

7. Existence theorem. It follows from the results of Section 5
that Equation (4.15) possesses an even periodic solution,

y = 3NSbo, y’ = 3MSéc (7.1)
where the operator M is detemined within the conditions of Theorem 6. 2.
We then obtain from (4.7) and (4.6) a system of nonlinear equations for
860 and 67
80 = — 3MSdc + 2neTdf, 8t = 3NS80 — 2me? V8 f — 2 e388f (7.2)
where 80 is detemmined by (4.9). If 6= B: and te= B:, we obtain
8fe=Bi, V8fe&=Bsy, Téfe=B1, SéfeB:y, w &b, dheh

Then it follows from (4.9) that 8o &= B:. Because of Theorems 6.1 and
6.3

MSéc &= B, NSé8c = B2

Equations (7.2) can now be written as
88 = Eidw, v = E2bw (7.3)

where 8 @ is in fact (86,87 ) whilst E, and E, are nonlinear operators
acting from B to B, and B,, respectively. Denoting by E the pair of
operators

E = {Ei, E2} (7.4

the system of equations (7.2) can be written as one functional equation
in the space B

80 — Edo (7.5)

It is easy to show that this equation can be solved by successive
approximations. Indeed E& @ can be put in the fom

Edw = & (G8f + Gidfr) (7.6)

where G and G; are linear operators acting from B; to B. We must show
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that there exists in the space B a sphere whose radius is such that the
operator E maps this sphere onto its interior, whilst the magnification
condition of the mapping is fulfilled, i.e.

| Edo] < | do], | Edwr — Edos|< d|dws — duz (1.7)

where d < 1. Denote by F and F; the nonlinear operators which relate
dw& B, 8f and 8f, i.e.

Féo = of, Fido = 8f1 (1.8)

The proof that the operator E gives a compressed mapping 1s equivalent
to the following: to show that if 8 w varies over a limited set in space
B, constants M;, M,, M, and M, of such a kind will be found that

Féo] < Mifdo], [Fido|<M,|do], [Fido — Fido,|< Ms|do — do |
[ Foo — Fdwr [ < M| do — doi] (7.9)

But inequalities (7.9) are easily proved, because 6f and 86f, are
analytic functions of 86 and 6r. It follows directly from this that
when ¢ is sufficiently small operator E will give a compressed mapping.
Thus we have been able to prove the following existence theorem.

It is possible to find a number €, such that the boundary-value prob-

lem (1.10) will have a solution which depends on two parameters ¢ and k’,

if0<e<ey, 0<E <1/V2

8. Relating of parameters cand k° to the physical parameters
determining the motion. It is known that steady wave motion is de-
temmined by two non-dimensional parameters. It follows from the results
of Section 1 that v and #/A can be taken as such parameters. It follows
from (1.8) that the period in the physical plane coincides with that of
the complex potential. From Equations (3.2) we have

P :%’ y () = (@), 0 (p) = &%° (9°) (8.1)

Because period 7° (¢®) and 0°(¢°) equals 2K, period r(¢) equals 2k/e,
and thus

. K ) (8.2)

Now observe that the period can tend to infinity in two cases; (1) k
is fixed, € » 0. From (8.1) it follows that within the limits 7 (¢) and
0(¢) give zero identically, i.e. the cnoidal wave degenerates into a
plane parallel flow. This is in fact the case studied by Littman.
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(2) ¢ is fixed, B » 1. Within the limits a solitary wave is obtained.

Relation (8.2) gives the relation between A and ¢ and k’. Expression
(1.13) gives the relation between v and ¢ and k’. It can be written as

1 K
2o [ L eeremcos e (57) — 1) de (8:3)
0

or, making use of (8.2) we obtain

K
1—v3=%8u—¢ﬂwwmméwwﬂm¢ (8.4)
0

If we make use of the theorem of implicit functions, it is easy to
demonstrate that for small values of ¢ Equation (8.4) can be solved in
tems of €. When ¢ is small v is close to unity. It is easy to deduce
approximate formulas connecting wavelength with amplitude and velocity.
This is not done here because these fomul as were derived in a simpler
manner in [6 ].
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